Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala.

نویسندگان

  • Chiung-Chun Huang
  • Chien-Chung Chen
  • Ying-Ching Liang
  • Kuei-Sen Hsu
چکیده

The intercalated cell masses (ITCs) of the amygdala are clusters of GABAergic interneurons that surround the basolateral complex of the amygdala. ITCs have been increasingly implicated in the acquisition and extinction of conditioned fear responses, but the underlying cellular mechanisms remain unexplored. Here, we report that repetitive stimulation of lateral amygdala (LA) afferents with a modified theta burst stimulation (TBS) protocol and induces long-term potentiation (LTP) of excitatory synapses onto medial paracapsular ITC (Imp) neurons. This TBS-induced LTP is; (1) induced and expressed post-synaptically, (2) involves a rise in post-synaptic Ca2+ and the activation of NR2B-containing N-methyl-D-aspartate receptors (NMDARs), (3) dependent on calcium/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase activation, and (4) associated with increased exocytotic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to the post-synaptic membrane. Remarkably, auditory fear conditioning led to a persistent increase in AMPAR/NMDAR ratio of glutamatergic synaptic currents and occluded TBS-induced LTP at LA-Imp synapses. Furthermore, extinction training rescued the effect of fear conditioning on AMPAR/NMDAR ratio and LTP induction. These results show that a prominent form of LTP can be elicited at LA-Imp synapses and suggest that this synaptic plasticity may contribute to the expression of fear conditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Acute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat

Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...

متن کامل

Effect of Clenbuterol Administration into the Basolateral Amygdala on Synaptic Plasticity in Dentate Gyrus Granule Cells in Male Rats

 Background and purpose: Neural circuits and neurotransmitter systems within the basolateral amygdala (BLA) play roles in forming emotional memory through communication with the hippocampus. Therefore, in this study, the role of these neural circuits on synaptic plasticity was investigated by agonist injection of beta-adrenergic receptors into the BLA. Materials and methods: In this experiment...

متن کامل

FACILITATION OF CORTICOSTRIATAL PLASTICITY BY THE AMYGDALA REQUIRES Ca-INDUCED Ca RELEASE IN THE VENTRAL STRIATUM

Popescu AT, Saghyan AA, Nagy FZ, Paré D. Facilitation of corticostriatal plasticity by the amygdala requires Ca -induced Ca release in the ventral striatum. J Neurophysiol 104: 1673–1680, 2010. First published June 16, 2010; doi:10.1152/jn.00233.2010. Motor learning and habit formation are thought to depend on corticostriatal synaptic plasticity. Moreover, basolateral amygdala (BLA) activity fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of neuropsychopharmacology

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2014